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Abstract. A new reaction kernel,K(j, k) = 2−qj−qk with 0< q < 1, is introduced, for which

the Smoluchowski equations of aggregationċj = 1
2

∑∞
k,l=1K(k, l)ckcl [δk+l,j − δk,j −δl,j ] can be

solved. The time evolution of the concentrationscj (t)and of their momentsMn(t) =
∑∞
j=1 j

ncj (t)

is analysed. Thecj (t) decay at large times ast−(2−qj ) in striking contrast to the behaviour of the
constant kernelK(j, k) = 2, for whichcj (t) behaves ast−2 at large times. On the other hand, the
moments behave in leading order at large times exactly like the moments of the constant kernel,
though differences appear at higher orders.

1. Introduction

In this paper we introduce and study a new solvable model for the kinetics of irreversible
aggregation. In this process aggregatesAj , which are characterized by their massj , react by
sticking to one another to form a larger aggregate:

Aj +Ak −→
K(j,k)

Aj+k. (1.1)

The non-negative quantitiesK(j, k) = K(k, j) are the mass-dependent rates at which the
aggregates stick to each other. Using the law of mass-action, namely the assumption that the
collision rate between two aggregates of massesj andk is given byK(j, k)cj ck, wherecj (t)
is the concentration of aggregateAj at timet , one obtains the following set of equations for
cj (t), which are known as the Smoluchowski equations [1]:

ċj = 1
2

∞∑
k,l=1

K(k, l)ckcl
[
δk+l,j − δk,j − δl,j

]
. (1.2)

The prefactor12 is conventional, to account for double counting. Here, and always below, a
superimposed dot denotes differentiation with respect to the timet .

The Smoluchowski equations (1.2) are an infinite set of coupled nonlinear ordinary
differential equations (ODEs). A few cases, corresponding to specific kernelsK(k, l),
have been solved exactly; there is, however, a well developed, albeit non-rigorous,
phenomenological ‘scaling theory’ that deals with a fairly general class of models [2]. The
purpose and scope of this paper is to exhibit a new case which can be solved and to analyse
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its behaviour; as discussed by one of us (FL) in a separate paper [3], this also contributes to a
better understanding of the validity and the limits of ‘scaling theory’.

Let us briefly review some well known qualitative features of the time evolution of
aggregation kinetics as described by the Smoluchowski ODEs (1.2), complemented by the
‘monodisperse’ initial condition

cj (0) = δj,1. (1.3)

(An arbitrary constant in the right-hand side of this equation can be eliminated by rescaling
both the concentrations and the time appropriately.) Most of the qualitative considerations
given below also hold for more general initial conditions than (1.3), though the extension of
the quantitative analysis is usually non-trivial. The qualitative behaviour is expected to be
unaffected as long as all moments (see (1.9) below) of the initial concentrations are finite.
Hence we focus hereafter mainly on the monodisperse initial condition (1.3).

The Smoluchowski equations (1.2) have no equilibrium (time-independent) solutions.
This follows physically from the absence of a backward reaction in (1.1) and (1.2). Thus the
range of concentrations which contribute significantly to the total mass increases as reaction
(1.1) proceeds, while the concentrationcj (t) of each specific species of massj decreases
eventually towards zero,

lim
t→∞[cj (t)] = 0. (1.4)

The total mass of the aggregates is conserved,
∞∑
j=1

jcj (t) =
∞∑
j=1

jcj (0) = 1 (1.5)

where the last equality can always be attained by a suitable rescaling of the concentrations
cj (t) and time, and will hereafter always be assumed. The validity of this conservation law is
proven by summing (1.2) overj from 1 to infinity and noticing that, since all the terms inside
the square brackets cancel out, the right-hand side vanishes. It should be pointed out that this
conclusion is invalidated by convergence problems ifcj (t) decays too slowly inj . In this
case there occurs a systematicdecreasein the total mass of the aggregates. This decrease is
physically interpreted as the formation of an infinite aggregate containing a finite portion of
the mass, which is not accounted for in the sum (1.5) [4, 5]. This phenomenon is known as
gelation. We shall not, however, be dealing with it here.

Since, at larger times, the range of masses which contribute significantly to the total mass
increases, it is appropriate to study the regime in whichj andt are both large, andj maintains
a given proportionx with respect to a so-called ‘typical size’s(t) which goes to infinity as
t →∞. It is then natural to make the following ansatz:

cj (t) ≈ j−28[j/s(t)] (1.6)

where the function8(x) is a ‘scaling function’ which vanishes quickly asx → ∞. This
is known as thescaling ansatzfor Smoluchowski’s equations and it has been extensively
investigated (see, for instance, [2, 3, 6]). The prefactorj−2 is motivated by the property (1.5)
of mass conservation [2].

So far, the only exactly solved models were related more or less directly with the following
general form of the reaction rates [7]:

K(j, k) = a + b (j + k) + cjk (1.7)

wherea, b andc are non-negative constants (of course, a common factor can be eliminated
from these three constants by rescaling the time in (1.2)). Ifc > 0, then gelation occurs at a
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finite time. Otherwise, the scaling theory applies, as reported in [2], and the following results
hold. If

K(j, k) = 2 (1.8a)

the Smoluchowski equations (1.2) with (1.3) admit the following solution [1, 7]:

cj (t) = t j−1

(t + 1)j+1
. (1.8b)

It is then easily seen that the scaling ansatz (1.6) applies asymptotically (t →∞, j →∞ and
x = j/t finite) with

s(t) = t + 1= t[1 + O(t−1)
]

8(x) = x2e−x. (1.8c)

For the momentsMn(t) of thecj (t), generally defined by the standard formula

Mn(t) ≡
∞∑
j=1

jncj (t) (1.9)

equation (1.8b) entails

M0(t) = 1

1 + t
(1.10a)

M2(t) = 2t + 1 (1.10b)

Mn(t) =
n∑

m=0

S(m)n m! tm−1 (n > 1) (1.10c)

wheren is an integer andS(m)n are the Stirling numbers of the second kind [8] defined as
follows:

jn =
n∑

m=0

S(m)n

j !

(j −m)! . (1.10d)

Equation (1.10c) follows from (1.8b) and the definition of the Stirling numbers of the second
kind (1.10d), together with the following elementary identity:
∞∑
j=1

j !

(j − n)! x
j = xn dn

dxn
1

1− x = x
n dn

dxn

(
x

1− x
)
=
(

n!xn

(1− x)n+1

)
(n > 1)

(1.11)

for integern. Hence at large times (t →∞)

M0(t) = t−1
[
1− t−1 + O(t−2)

] = t−1− t−2 + O(t−3) (1.12a)

M2(t) = 2t
[
1 + (2t)−1

] = 2t + 1 (1.12b)

Mn(t) = n! tn−1
[
1 + 1

2(n− 1) t−1 + O(t−2)
]
. (1.12c)

If instead

K(j, k) = b(j + k) (1.13a)

the solution is also known [7]:

cj (t) = aj (1− e−bt )j−1eje−bte−bt (1.13b)
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where the constantsaj are the following combinatorial coefficients [7]:

aj = jj−2e−j

(j − 1)!
= j−3/2

√
2π

[1 + O(j−1)] (1.13c)

where the second equality follows from Stirling’s formula. Hence the scaling ansatz (1.6) still
holds, with

s(t) = e2bt 8(x) =
√
x

2π
e−x/2 (1.13d)

as can be checked from (1.13b) and (1.13c). The first and second moments can also be evaluated
in closed form [7]:

M0(t) = e−bt (1.14a)

M2(t) = e2bt . (1.14b)

The exact expressions for the higher momentsMn(t) become unwieldy for largen, but at large
times they are given by

Mn(t) = (2n− 3)!! e2(n−1)bt
[
1 + O(e−bt )

]
(n > 2) (1.15)

for integern, as shown in appendix A. Note that, in contradistinction to the constant kernel case,
the second and the zeroth moment are not inversely proportional to each other at large times
(see (1.12a), (1.12b) and (1.14a), (1.14b)). On the other hand, in this case the zeroth moment
and the monomer concentrationc1(t), see (1.13b), (1.13c) and (1.14a), go asymptotically to
zero at large times in the same way,

c1(t)

M0(t)
≡ c1(t)∑∞

j=1 cj (t)
= exp[−1 + exp(−bt)] = e−1[1 + O(e−bt )]. (1.16)

In the following we focus on the new solvable model characterized by the kernel

K(j, k) = 2− e−bj − e−bk = 2− qj − qk (1.17a)

whereb is a positive constant,b > 0, and

q = e−b (1.17b)

is a positive constant which is less than unity, 0< q < 1. Hereafter we will use the constants
q or b at our convenience. Clearly, ifb � 1, the kernel (1.17a), (1.17b) differs little from the
constant kernel (1.8a) for all (positive integer) values of the indicesj andk, yet we find below
some remarkable differences in the behaviour of the corresponding concentrationscj (t) and
momentsMn(t). If insteadb � 1, then the kernel (1.17a) for values ofj andk much less than
1/b,

j � 1/b k � 1/b (1.18a)

takes the form

K(j, k) = b (j + k)[1 + O(bj, bk)]. (1.18b)

Hence it approximates the linear sum kernel (1.13a) rather than the constant kernel (1.8a). Of
course, for large values of the indices,

j � 1/b k � 1/b (1.19)

the kernel (1.17a), (1.17b) again approximates the constant kernel (1.8a). Hence the study
of our model, see (1.17a) and (1.17b), in the caseb � 1, sheds some light, using exact
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results, on the crossover between two different types of kernels [3]. Indeed, as is shown in the
scaling theory [4], the asymptotic degree of homogeneity inj andk of the kernelK(j, k) is
the most relevant factor in characterizing its scaling behaviour. The solution of our model in
the case ofb � 1 will allow one to investigate the behaviour of an aggregating system with
a kernelK(j, k), see (1.17a) and (1.17b), which, over a broad range of lower mass values,
is homogeneous of degree one, see (1.18b), but is asymptotically (j → ∞) homogeneous
of degree zero, see (1.17a) and (1.17b) [3]. Clearly, such crossovers exist in nature, because
aggregates may undergoqualitativechanges in their behaviour as their size increases.

In section 2 we provide the solution of the system (1.2) with the initial condition (1.3), to
the extent of obtaining a closed expression for the generating function of the concentrations.
We also give expressions for the concentrationsc1(t) andc2(t) of monomers and dimers as
well as for the momentsM0(t) andM2(t), see (1.9); of course

M1(t) ≡
∞∑
j=1

jcj (t) = 1 (1.20)

see (1.5) and (1.3). We also identify the asymptotic behaviours at large time of all
concentrationscj (t) and momentsMn(t); a comparison of these behaviours with that of the
constant kernel case is also made. Some aspects of these findings are surprising because they
do not reproduce current expectations based on scaling theory; this is discussed in some detail
by one of us (FL) in a separate paper [3]. In section 3 we summarize our results and offer
some indications on future developments.

2. The solution

In this section we show how to solve the evolution equations (1.2) with the initial conditions
(1.3) and the kernel (1.17a) and (1.17b). We focus on the generating function of the
concentrations and obtain a rather explicit form for it. We then extract various results from
it as outlined above and compare them with analogous results for the constant kernel case (to
which our case indeed reduces forq = 0, see (1.17a), (1.17b) and (1.8a)).

The kernel (1.17a) and (1.17b) is of the form

K(j, k) = f (j) + f (k) (2.1a)

with

f (j) = 1− e−bj = 1− qj . (2.1b)

For all kernels of type (2.1a) there exists a transformation [4] which yields a substantial
simplification of the problem. Define

φj (θ) = cj (t)∑∞
k=1 ck(t)

= cj (t)

M0(t)
(2.2a)

together with the change of time variable fromt to θ according to the definition

dθ = dt
∞∑
k=1

ck(t) = dt M0(t). (2.2b)

Note that this is a somewhat implicit change of independent variable. However, once the
quantitiesφj (θ) are known, the change can be inverted by summing (2.2a) multiplied by j
overj from one to infinity and using (1.5). There obtains

∞∑
j=1

jφj (θ) =
( ∞∑
j=1

cj (t)

)−1

(2.3)
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which, via (2.2a), yields

cj (t) = φj (θ)∑∞
k=1 kφk(θ)

(2.4)

as well as, via (2.2b),

dt = dθ
∞∑
k=1

kφk(θ). (2.5)

These formulae, (2.5) and (2.4), allow one to recover the original concentrationscj (t) as well
ast = t (θ) from the quantitiesφj (θ).

It is easily seen, using (2.2a), that the Smoluchowski equations (1.2) take the following
simpler form:

dφj
dθ
=

j−1∑
k=1

f (k) φkφj−k − f (j) φj (2.6)

with the initial condition

φj (0) = δj,1 (2.7)

which corresponds to the monodisperse initial condition (1.3). Hereafterθ = 0 for t = 0. In
(2.6) and elsewhere, a sum vanishes if the upper limit is less than the lower limit. From (2.6)
and (2.7), one finds

φj (θ) = φj (0) e−f (j)θ + e−f (j)θ
j−1∑
k=1

f (k)

∫ θ

0
dθ ′ φk(θ ′) φj−k(θ ′) ef (j)θ

′
. (2.8)

This allows one to solve (2.6) with (2.7) recursively, but the expressions rapidly become
unwieldy. Note that (2.2a) implies the identity (normalization formula)

∞∑
j=0

φj (θ) = 1. (2.9)

We now define the generating function

F̃ (ζ, θ) =
∞∑
j=1

φj (θ) ejζ (2.10)

as well as a (pseudodifferential) operatorTf which acts on power series in eζ in the following
manner:

Tf

[ ∞∑
j=1

aje
jζ

]
=
∞∑
j=1

f (j) aje
jζ . (2.11)

Note thatTf is a well defined operator for a large class of functionsf (j). In particular,
however, iff (j) is a polynomial inj ,

f (j) =
N∑
n=0

fnj
n (2.12)

thenTf is a linear differential operator with constant coefficients acting on the variableζ ,

Tf =
N∑
n=0

fn

(
∂

∂ζ

)n
. (2.13)
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Equations (2.6) forφj (θ) then yield, via (2.10), the following (pseudodifferential) equation
for F̃ (ζ, θ):

∂F̃

∂θ
(ζ, θ) = [F̃ (ζ, θ)− 1](Tf F̃ )(ζ, θ). (2.14)

It is thus seen that any model characterized by a kernel of the sum form (2.1a) leads to this
equation. The models considered so far have involved ordinary differential operatorsTf , so
that (2.14) generally became a (nonlinear) partial differential equation. Our model involves
instead a difference operator.

Indeed, let us now specialize to our case, see (2.1b). It is then notationally convenient to
redefine the generating function by writing

F(ζ, θ) =
∞∑
j=1

φj (θ) ebjζ (2.15)

instead of (2.10). Then (see (2.11) and (2.1b))

(Tf F )(ζ, θ) = F(ζ, θ)− F(ζ − 1, θ). (2.16)

Hence, if we now define

H(ζ, θ) = F(ζ, θ)− 1 (2.17)

we obtain from (2.14) and (2.16) the following nonlinear differential-difference equation for
H(ζ, θ):

∂H

∂θ
(ζ, θ) = H(ζ, θ)[H(ζ, θ)−H(ζ − 1, θ)]. (2.18)

Before proceeding to solve this equation, let us note that (2.15) and (2.17) entail the
formula

φj (θ) = b−j

j !

(
e−bζ

∂

∂ζ

)j
H(ζ, θ)

∣∣∣∣
ζ=−∞

(j > 1) (2.19a)

or equivalently

φj (θ) = 1

j !

(
∂

∂η

)j
H(b−1 ln η, θ)

∣∣∣∣
η=0

. (2.19b)

Let us now show how the evolution equation (2.18) is solved. A major simplification
occurs by writingH(ζ, θ) in the following quotient form:

H(ζ, θ) = h(ζ − 1, θ)

h(ζ, θ)
. (2.20)

Then (2.18) is satisfied ifh(ζ, θ) satisfies the followinglinear equation:

∂h

∂θ
(ζ, θ) = −h(ζ − 1, θ). (2.21)

Let us note thath(ζ, θ) is not uniquely determined byH(ζ, θ). The latter, of course, is unique,
once the initial conditions are specified, as it is defined via (2.15) and (2.17) in terms of the
system of ODEs (2.6) for which existence and uniqueness theorems exist.

To solve (2.21) we define the following Fourier generating function3(ζ, θ, ρ):

3(ζ, θ, ρ) =
∞∑

k=−∞
h(ζ − k, θ)eiρk. (2.22)
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It is then easily seen, via (2.21), that3(ζ, θ, ρ) satisfies the linear ODE inθ

∂3

∂θ
(ζ, θ, ρ) = −e−iρ3(ζ, θ, ρ) (2.23a)

entailing

3(ζ, θ, ρ) = 3(ζ, 0, ρ)exp(−θe−iρ). (2.23b)

From this last expression and (2.22) it is easy to obtain the following expression forh(ζ, θ):

h(ζ, θ) =
∞∑
m=0

(−θ)m
m!

h(ζ −m, 0). (2.24)

There remains to evaluate the initial datah(ζ, 0), and for this we must now specify the
initial conditions. We refrained from doing so until now to keep our treatment general. Now
we specify that the system is initially monodisperse, see (1.3) and (2.7). Hence, via (2.15) and
(2.17),

H(ζ, 0) = ebζ − 1. (2.25a)

This yields, via (2.20) atθ = 0, the following recurrence relation forh(ζ, 0):

h(ζ, 0) = (ebζ − 1)−1h(ζ − 1, 0) (2.25b)

which can be solved to yield, up to an irrelevant (see (2.20)) multiplicative constant,

h(ζ, 0) = eiπζ
∞∏
l=0

[
1− eb(ζ−l)

]−1
. (2.25c)

Inserting this formula in (2.24) one finally obtains

h(ζ, θ) =
∞∑
m=0

(−θ)m
m!

eiπ(ζ−m)
∞∏
l=m

[
1− eb(ζ−l)

]−1 = eiπζ
∞∑
m=0

θm

m!

∞∏
l=m

[
1− eb(ζ−l)

]−1
. (2.26)

Clearly, we have glossed over some details, such as the convergence of the trigonometric sum
in (2.22). However, the final result (2.26) is obviously well defined (except at some specific
poles) and it can be verified straightforwardly that it satisfies both the evolution equation (2.21)
and the initial condition (2.25c).

Combining the definition (2.20) ofH(ζ, θ) in terms ofh(ζ, θ) with equation (2.21)
satisfied byh(ζ, θ) one obtains

H(ζ, θ) = − ∂

∂θ
ln[h(ζ, θ)]. (2.27)

Clearly, in this equation, one can multiplyh(ζ, θ) by any function which does not depend on
θ without affecting the final result. After some such manipulations, one finally obtains

H(ζ, θ) = − ∂

∂θ
ln

[ ∞∑
m=0

θm

m!

∞∏
l=0

(1− qlqm−ζ )−1

]
(2.28a)

= − ∂

∂θ
ln

[ ∞∑
m=0

θm

m!

∞∏
l=0

1− ql−ζ
1− ql+m−ζ

]
(2.28b)

where, of course, we used the definition ofq (1.17b). Let us re-emphasize that the right-hand
side of (2.28b) is a well defined expression (both the infinite product and the sum clearly
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converge since 0< q < 1) and that it satisfies the evolution equations (2.18) and the initial
condition (2.25a). Note that (2.28b) entails

H(0, θ) = 0 (2.29)

which clearly corresponds, via (2.17) and (2.15), to the normalization formula (2.9).
We now massage the expression (2.28) a bit more, to make its analysis more tractable. To

this end we recall the definition of theq-exponential†,

eq(x) =
∞∏
l=0

(1− qlx)−1 (2.30a)

as well as that of theq-factorial(x; q)n, defined as follows for non-negative integer values of
n:

(x; q)n =
n−1∏
l=0

(1− xql) (n > 1) (2.30b)

(x, q)0 = 1. (2.30c)

The namesq-exponential andq-factorial can be understood if one looks at the limitq → 1:
in this case one finds the limiting values

lim
q→1

[(1− q)−n(q; q)n] = n! (2.30d)

lim
q→1

eq [(1− q)x] = exp(x). (2.30e)

From the definition ofeq(x) in (2.30a) it follows thateq(x)also satisfies the following recursion
relation:

1

x

[
eq(x)− eq(qx)

] = eq(x) (2.30f)

which is a discrete analogue of the differential equation for the exponential function. From
this relation or otherwise, one derives the well known identity [9]

eq(x) =
∞∑
r=0

xr

(q; q)r . (2.31)

By using it (withx = qm−ζ ) we can rewrite (2.28a) as follows:

H(ζ, θ) = − ∂

∂θ
ln

{ ∞∑
r=0

q−rζ exp(θqr)

(q; q)r

}
(2.32a)

H(ζ, θ) = − ∂

∂θ
ln

{ ∞∑
r=0

q−rζ

(q; q)r
[
exp(θqr)− 1

]
+ eq(q

−ζ )
}

(2.32b)

H(ζ, θ) = − ∂

∂θ
ln[1 + S(ζ, θ)] (2.32c)

whereS(ζ, θ) is defined as

S(ζ, θ) = 1

eq(q−ζ )

∞∑
r=0

q−rζ

(q; q)r
[
exp(θqr)− 1

]
. (2.33)

Note that in (2.32b) we have added and subtracted in the argument of the logarithm theq-
exponential functioneq(q−ζ ), see (2.31).

† See, for example, the chapter on theq-binomial theorem, in particular equation (1.3.15) in [9].
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The form (2.32c) is convenient because the function [eq(q
−ζ )]−1, see (2.30f ), is entire in

ζ and it has a simple zero atζ = 0,[
eq(q

−ζ )
]−1 = (1− q−ζ )[eq(q1−ζ )

]−1
(2.34a)

see (2.30a), so that, in the neighbourhood ofζ = 0,[
eq(q

−ζ )
]−1 = −T (q)bζ{1 +Q(q)bζ/2 + O[(bζ )2]

}
(2.34b)

T (q) = 1/eq(q) =
∞∏
l=0

(1− ql+1) =
[ ∞∑
r=0

qr

(q; q)r

]−1

(2.34c)

Q(q) = 1− 2
∞∑
l=1

ql

1− ql (2.34d)

where we have introduced the quantitiesT (q) andQ(q) for notational convenience. Note that
this definition entails

T (0) = 1 Q(0) = 1 (2.34e)

1< T (q) <∞ −∞ < Q(q) < 1 (0< q < 1). (2.34f)

It is therefore easy to evaluateH(ζ, θ), as well as itsζ -derivatives, atζ = 0. In particular, in
addition to (2.29), we obtain

∂H(ζ, θ)

∂ζ

∣∣∣∣
ζ=0

= bT (q) ∂
∂θ

∞∑
r=0

exp(θqr)− 1

(q; q)r = bT (q)
∞∑
r=0

qr exp(θqr)

(q; q)r . (2.35)

This formula is convenient to connect the ‘new time’θ with the ‘real time’ t . Indeed,
(2.5), (2.17) and (2.15) entail

b dt = dθ
∂H(ζ, θ)

∂ζ

∣∣∣∣
ζ=0

(2.36)

hence we obtain

t = T (q)
∞∑
r=0

exp(θqr)− 1

(q; q)r = T (q)
[
exp(θ)− 1 +

∞∑
r=1

exp(θqr)− 1

(q; q)r

]
(2.37)

where the integration constant has been chosen so thatθ = 0 for t = 0.
Now we can also obtain the behaviour ofM0(t) in real time. Indeed, equation (2.2b)

entails

M0(t) =
∞∑
k=1

ck(t) = (dt/dθ)−1 (2.38a)

hence, from (2.37),

M0(t) ≡
∞∑
k=1

ck(t) =
[
T (q)

∞∑
r=0

qr exp(θqr)

(q; q)r

]−1

. (2.38b)

This formula, together with (2.37), provides an exact, if implicit, expression forM0(t).
For largeθ , equation (2.37) yields

t = T (q) eθ
{

1 +
e−(1−q)θ

1− q + O
[
e−(1−q

2)θ
]}

(2.39a)
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which is easily inverted to yield

eθ = t

T (q)

{
1− [t/T (q)]−(1−q)

1− q + O

[(
t

T (q)

)−(1−q2)]}
. (2.39b)

Note that these results imply thatθ goes to infinity whent does. Thus the above manipulations
are indeed consistent.

Hence, at large times,

M0(t) ≡
∞∑
k=1

ck(t) = e−θ

T (q)

{
1− qe−(1−q)θ

1− q + O
[
e−(1−q

2)θ
]}

(2.40a)

and using (2.39b) this also yields

M0(t) ≡
∞∑
k=1

ck(t) = t−1

{
1 +

[
t

T (q)

]−(1−q)
+ O

[(
t

T (q)

)−(1−q2)]}
. (2.40b)

It is of interest to compare this last formula with the corresponding one for the constant
kernel (1.8a), see (1.12a). The first remark is that, while the dominant term at larget in (1.12a)
and (2.40b) coincide, the first correction terms differ not only in their time dependence (the
exponent oft) but even in their sign (see (2.34e)). This is somewhat surprising, since, at least
for b � 1, namely forq close to zero, our model resembles the constant kernel case (see the
discussion after (1.17)). Indeed, forq = 0 (as opposed toq nearly zero) equation (2.37) yields
t = exp(θ)−1, see (2.34d). Hence forq = 0, equation (2.38a) yields exactly (1.10a). We see
therefore that the first correction terms in (1.12a) and (2.40b) have opposite signs, no matter
how smallq is, as long as it does not vanish; but the results coincide forq = 0. This paradox
is resolved when one notes that the higher-order correction terms in (2.40b), which were left
uncomputed, become, in the limitq → 0, of the same order as the leading correction. Let us
moreover point out that the corrections appearing in (2.40b) are of a different nature from that
appearing in (1.12a). The latter is a so-calledanalytic correction[10] which can be removed
by a simple shift of the time variable. The corrections in (2.40b) cannot be so removed.

To sum up, in our model the behaviour at large time of the zeroth momentM0(t) displays
significant differences from that of its counterpart in the constant kernel case. The leading
behaviours are in fact identical, see (1.12a) and (2.40b), but there exist non-leading terms in
(2.40b) with exponents which depend on the parameterq of the model.

Let us now compute the monomer concentrationc1(t). From (2.6) withj = 1 and (2.1b)
we obtain

dφ1

dθ
= −(1− q) φ1. (2.41)

Hence, using the monodisperse initial condition (2.7),

φ1(θ) = exp[−(1− q)θ ]. (2.42)

(This formula is also obtained, of course, from (2.8).) Hence, from the definition (2.2a) of the
quantitiesφj (θ) and from (2.38b),

c1(t) = 1

T (q)

{ ∞∑
r=0

qr exp
[
(1− q + qr)θ

]
(q; q)r

}−1

. (2.43)

This, in conjunction with (2.37), provides an exact, albeit implicit, expression forc1(t). In the
limit of large times this yields

c1(t) = e−(2−q)θ

T (q)

{
1− qe−(1−q)θ

1− q + O
[
e−(1−q

2)θ
]}

(2.44a)
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hence, via (2.39b)

c1(t) = [T (q)]1−q t−(2−q)
{

1 + 2

[
t

T (q)

]−(1−q)
+ O

[(
t

T (q)

)−(1−q2)]}
. (2.44b)

The comparison with the constant kernel case, which (see (1.8b) with j = 1) yields

c1(t) = t−2
[
1− t−1 + O(t−2)

]
(2.45)

is remarkable. Both the exponent,−2 + q, and the amplitude [T (q)]1−q , of the leading term
in (2.44b) go over, asq → 0 (see (2.34d)), to the corresponding values,−2 and 1, in (2.45).
However, again we find a difference in sign in the first correction terms, see (2.45), (2.44b)
and (2.34e). The resolution of this paradox is the same as in the previous case: asq → 0, the
higher-order corrections which were not computed, see (2.44b), become of the same order as
the leading-order correction. On the other hand, the difference in the leading behaviour for
q > 0 is more remarkable. The relevance of this finding to scaling theory is discussed in [3].

As we have seen, the corrections to the total number densityM0(t) areanomalous. In
fact, theabsolutesize of the leading correction term in (2.40b) decays proportionally tot−2+q ,
that is, exactly in the same way as the monomer, see (2.44b). What is more, the amplitude of
this correction term is the same, so that

M0(t)− 1/t − c1(t) = O

[(
t

T (q)

)−(2−q2)]
. (2.46)

Thus we see that theleading correctionto the total number densityM0(t), which we called
anomalousbecause it differs from the corresponding correction in the constant kernel case, is
in fact entirely due to the contribution ofc1(t) toM0(t).

Let us now look at the behaviour ofc2(t). A computation entirely similar to that performed
for φ1(θ) yields, via (2.8),

φ2(θ) = exp[−(1− q2)θ ]
1− exp[−(1− q)2θ ]

1− q . (2.47)

Using (2.2a) and (2.38a) one finds

c2(t) = 1− exp[−(1− q)2θ ]

(1− q)T (q)
{ ∞∑
r=0

qr exp[(qr − q2 + 1)θ ]

(q; q)r

}−1

(2.48)

and for larget this yields, via (2.39b),

c2(t) = (1− q)−1[T (q)]1−q2
t−2−q2

{
1−

[
t

T (q)

]−(1−q)2
+ (q + 2)

[
t

T (q)

]−(1−q)
−3

[
t

T (q)

]−(1−q)(2−q)
+ O[t−(1−q

2)]

}
(2.49)

where the last computed term in the right-hand side is only meaningful if1
2 < q < 1. Note

the proliferation of correction terms with different orders of magnitude. This phenomenon
becomes more pronounced asj increases; moreover, as we shall see below, the large-time
limit for fixed j is only attained for a range of times the lower limit of which grows rapidly
with j .

Concerning the large-time behaviour ofcj (t) at fixedj , we show below that at large times

cj (t) = [(q; q)j−1]−1[T (q)]1−qj t−(2−q
j )[1 + o(1)]. (2.50)
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Let us prove immediately that the order of magnitude behaviour given by this formula is
correct, relegating the evaluation of the amplitude in (2.50) to appendix B. For the leading
term of (2.50) to provide a good approximation tocj (t), however, it is necessary that this
term be much larger than the leading correction term. As follows from (2.53) below, or the
computation in appendix B, this correction always decays more slowly thant−2. For (2.50) to
describe the true behaviour ofcj (t), it is therefore necessary that

t−(2−q
j ) � t−2 (2.51a)

implying

ln t � q−j . (2.51b)

Note that, since all measures of characteristic size, such asMn+1(t)/Mn(t) for n > 1, grow
linearly int (see (2.61) below), at timet only those aggregates whose sizej is of order ln lnt or
less have attained their asymptotic behaviour: a first indication of possible differences between
asymptotic behaviour in time at fixed sizej and at vanishing ratioj/t . This is discussed in
more detail in [3].

We prove the result (2.50) by induction. We assume that for allk < j ,

φk(θ) = αk exp[−θ(1− qk)][1 + o(1)]. (2.52)

Here theαk denote unspecified constants. However, from (2.8) and (2.1b) one obtains

φj (θ) = exp[−(1− qj )θ ]
j−1∑
k=1

[
(1− qk)

∫ θ

0
dθ ′φk(θ ′) φj−k(θ ′) e(1−q

j )θ ′
]
. (2.53)

From (2.52) there follows that the integral converges asθ →∞, so that

φj (θ) = αj exp[−θ(1− qj )][1 + o(1)] (2.54)

consistently with (2.52). Via (2.2a), (2.40a) and (2.39b) this confirms (2.50). Q.E.D

Let us finally study the momentsMn(t) of the concentrations, see (1.9). They can be
evaluated by means of the expression

Mn(t) = b−n
( ∞∑
j=1

cj (t)

)
∂nH(ζ, θ)

∂ζ n

∣∣∣∣
ζ=0

(2.55)

entailed by (1.9), (2.2a), (2.15) and (2.17). The expression forM2(t) is thereby found to be
(from (2.32c) with (2.33) via (2.34))

M2(t) = 2T (q)
∞∑
r=0

eθq
r − 1

(q; q)r +
2
∑∞

r=0 rq
reθq

r

/(q; q)r∑∞
r=0 q

reθqr /(q; q)r +Q(q) (2.56)

with Q(q) defined by (2.34d), which will be used below whenever convenient. Note that this
quantity diverges asq → 1. From (2.55) there obtains, in mixed but useful notation, see
(2.37),

M2(t) = 2t +Q(q) +
2
∑∞

r=1 rq
reθq

r

/(q; q)r∑∞
r=0 q

reθqr /(q; q)r . (2.57)

One therefore finds for large times,

M2(t) = 2t +Q(q) +
2q

1− q exp[θ(q − 1)] + O
{
exp[θ(q2 − 1)]

}
(2.58a)
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and hence, via (2.39b)

M2(t) = 2t +Q(q) +
2q

1− q [t/T (q)]q−1] + O
{
[t/T (q)](q2 − 1)

}
. (2.58b)

Note the remarkable structure of this expression: it differs fromM2(t) for the constant kernel
case, see (1.10b), in the next-to-leading order by an additive constant, which diverges asq → 1.
This fact is related to the existence of a transient behaviour over a large range of times in which
M2(t) grows exponentially int , see (1.14). This is discussed in detail in [3].

Note, moreover, that no correction of ordert−1+q appears in (2.58) relative to the leading
term. We show in appendix C that this is indeed true for alln and that

Mn(t)−M(0)
n (t) = −[1−Q(q)][(n− 1)/2]n! tn−2 + O(tn−3+q) (n > 2) (2.59)

whereM(0)
n (t) is thenth moment for the constant kernel case as given in (1.12c). From (2.59)

and (1.12c) one then obtains

Mn(t) = n! tn−1

[
1 +

n− 1

2
Q(q) t−1 + O(t−2+q)

]
(n > 2). (2.60)

Note finally that an expression similar to (2.57) can also be derived for the inverse of the
zeroth moment, namely

[M0(t)]
−1 = t + 1− T (q)

∞∑
r=1

exp(θqr)− 1

(q; q)r−1
. (2.61)

This is obtained from (2.37) and (2.38) using the relation

(q; q)r = (q; q)r−1(1− qr) (2.62)

implied by (2.30b) and (2.30c)

3. Summary and outlook

In this paper we have introduced and solved the new model of aggregation kinetics characterized
by the Smoluchowski evolution equations (1.2) with the kernel (1.17a) and (1.17b), focusing
mainly on the solution identified by the ‘monodisperse’ initial condition (1.3). We have, in
particular, obtained explicit formulae for the long-time behaviour of the concentrationscj (t)

and of the momentsMn(t) (see (1.9)): (2.50) with (2.34c) gives the leading term ast →∞ of
cj (t), (2.40b) with (2.34c) gives the leading term, as well as the first correction, ofM0(t) as
t →∞ and likewise (2.60) with (2.34c) for Mn(t) with n > 2 (for n = 1 the result is trivial,
see (1.5)). Exact, if not quite explicit, formulae are also given for the concentrationscj (t) and
the momentsMn(t) for all time, especially for low values of the ‘mass’ indexj and of the
‘moment’ indexn: see (2.43) and (2.48) with (2.37) and (2.34c) for c1(t) andc2(t); as well
as (2.38b) and (2.57) with (2.47) and (2.34c) for M0(t) andM2(t). We also compared these
findings with the corresponding results for the prototypical Smoluchowski model characterized
by a constant kernel [1] (to which our model reduces forq = 0); this is further discussed in
a separate paper by one of us (FL) [3], where the limiting case of our model withq → 1 is
elaborated upon and used to illustrate the ‘crossover’ phenomenon manifested by our model
with q very close to unity, in which case the kernel (1.17) is well approximated by the linear
kernelK(j, k) = b (j + k) for a large range of (low) values of the ‘mass’ indicesj andk but
approximates the constant kernelK(j, k) = 2 when the indicesj andk become very large.
This ‘crossover’ phenomenon is of interest for applications, since kernels featuring such a
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behaviour correspond to situations characterized by an aggregation phenomenology whose
nature changes as the size of the clusters increases. Such situations are beyond the range of
conventional scaling theory, so that an exact result in this respect is of interest [3].

A remarkable feature of our findings is the difference displayed by the behaviour at large
times of the momentsMn(t) in our model, relative to their counterparts in the constant kernel
model; a difference which shows up, however, only in the next-to-leading terms (see (2.40b)
and (1.12a), as well as (2.60) and (1.12c)). Analogous results had been obtained in a variant
of the constant kernel case, featuring a kernel whose only dependence on the mass indices is
via their parity [11]. We plan to treat this model in a subsequent paper [12], because we have
obtained some results for it that go beyond those known hitherto [11].
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Appendix A

Here we prove (1.14) and (1.15). Using (1.2) one finds forMn(t), see (1.9),

Ṁn(t) = 1
2

∞∑
k,l=1

[
(k + l)n − kn − ln]K(k, l)ckcl. (A.1)

For the linear kernelK(k, l) = b (k + l), this becomes, for non-negative integer values ofn (to
which we restrict ourselves throughout this appendix)

Ṁ0 = −bM0M1 = −bM0 (A.1a)

Ṁn(t) = b
n−1∑
m=1

(
n

m

)
Mm+1Mn−m (n > 2) (A.1b)

with the initial conditions (see (1.3) and (1.9))

Mn(0) = 1. (A.2)

In (A.2) we also used mass conservation, see (1.20); clearly (A.2) together with (A.4) yields
(1.14a).

We then note that (A.1b) with (1.20) yields

Ṁ2 = 2bM2 (A.3)

and this, together with (A.3), gives (1.14b).
To prove (1.15) we make the ansatz

Mn(t) = αne2(n−1)bt [1 + O(e−bt )] (n > 2). (A.4)

As shown by (1.14b), this is correct forn = 2 (indeed, trivially, forn = 1 as well, see (1.20)).
We now show by induction onn that it is true for all values ofn > 2. Assume (A.4) to be true
for all values of the moment index up ton− 1. Then (A.1b) yields via (1.20)

Ṁn = bnMn + be2b(n−1) t [1 + O(e−bt )]
n−2∑
m=1

(
n

m

)
αm+1αn−m (n > 3). (A.5)
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Define

µn(t) = Mn(t) e−bnt (n > 3). (A.6)

Equation (A.5) then becomes

µ̇n = beb(n−2) t [1 + O(e−bt )]
n−2∑
m=1

(
n

m

)
αm+1αn−m (n > 3). (A.7)

Hence

µn(t) = αneb(n−2) t [1 + O(e−bt )] (n > 3) (A.8)

for large timest , where

(n− 2)αn =
n−2∑
m=1

(
n

m

)
αm+1αn−m (n > 3). (A.9)

Of course, in the right-hand-side of (A.9),α2 = 1, see (A.4) and (1.14b). To complete the
proof we need to show that

αn = (2n− 3)!! (n > 2). (A.10)

To this end, we introduce the generating function

F(x) =
∞∑
n=2

αn

n!
xn. (A.11)

Via (A.9), one then obtains forF(x)

x
dF

dx
− 2F = F dF

dx
(A.12)

with F(0) = F ′(0) = 0, see (A.12). It is then easily verified that

F(x) = 1− x −√1− 2x (A.13)

from which (A.10), hence (1.15), follow.

Appendix B

In this appendix we prove (2.50). Via (2.39), (2.2a) and (2.40), it is equivalent to

φr(θ) = e−(1−q
r )θ

(q; q)r−1
[1 + o(1)]. (B.1)

To prove this formula, we use (2.32a) and obtain

H(ζ, θ) = −
∑∞

r=0[qr/(q; q)r ]e(qr−1)θebrζ

1 +
∑∞

r=1[e(qr−1)θ /(q; q)r ]ebrζ . (B.2)

The right-hand side of (B.2) can be expanded to yield

H(ζ, θ) = −
∞∑
r0=0

qr0

(q; q)r0
e(q

r0−1)θebr0ζ
∞∑
N=0

(−1)N
[ ∞∑
s=1

1

(q; q)s e(q
s−1)θebsζ

]N
. (B.3)

In this expression, we collect all terms contributing to the factor multiplying ebrζ , with r a
non-negative integer, and single out those which dominate in the limitθ →∞. Via (2.17) and
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(2.15), this yields the large-time behaviour ofφr(θ). Up to a sign, all these terms are of the
form

qr0

(q; q)r0
exp[(qr0 − 1)θ ]

N∏
k=1

exp[(qsk − 1)θ ]

(q; q)sk
(B.4)

wherer0 > 0 andsk > 1, as implied by the limits of ther0 ands summations in (B.3). Since
the terms must combine to contribute to the coefficient of ebrζ we must have

r0 +
N∑
k=1

sk = r. (B.5)

From (B.4) one sees that the sum associated to the set of indicesr0 andsk, with 16 k 6 N ,
has the following behaviour as a function ofθ :

C(r0, s1, . . . , sN) exp

{[
qr0 +

N∑
k=1

qsk − (N + 1)

]
θ

}
(B.6)

whereC(r0, s1, . . . , sN) is independent ofθ .
For 0< q < 1

qr + qs 6 1 +qr+s (B.7a)

since

(1− qr)(1− qs) > 0. (B.7b)

If we now apply (B.7a) iteratively, we obtain (see (B.5))

qr0 +
N∑
k=1

qsk 6 N + qr0+
∑N

k=0 sk = N + qr . (B.8)

From this follows, see (B.6), that, in theθ →∞ limit, no term grows more than

exp[(qr − 1)θ ]. (B.9)

It now remains to determine the cases in which the growth is precisely proportional to (B.9).
There are only two possibilities:

(a) r0 = r: in this case allsk must be zero (see (B.5)). This implies thatN is equal to zero
and gives the contribution

− qr

(q; q)r exp[(qr − 1)θ ]. (B.10)

(b) s1 = r. In this caseN must be unity andr0 vanishes. This yields the contribution

1

(q; q)r exp[(qr − 1)θ ]. (B.11)

Summing both contributions, (B.10) and (B.11), and using (2.63), we obtain

φr(θ) = exp[(qr − 1)θ ]

(q; q)r−1
(B.12)

and this concludes our proof, see (B.1).
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Appendix C

In this appendix we prove (2.59), namely

Mn(t)−M(0)
n (t) = −n!

n− 1

2
[1−Q(q)]tn−2 + O(tn−3+q) (n > 2) (C.1)

wheren is an integer andQ(q) is defined by (2.34c). Mn(t), respectively,M(0)
n (t) are the

nth moments, see (1.9), in our model, respectively, in the constant kernel case (see (1.10) and
(1.12)).

We first establish the following fact. Consider the sum

Nm,p(θ) =
∞∑
j=1

jmφj (θ) e−bpj (C.2)

wherem is a non-negative integer,p > 0 is a positive number and the quantitiesφj (θ) are
defined by (2.2) for our model. Then we claim that, ast →∞,

Nm,p(θ) = O[t−(1−q)]. (C.3)

(Note that here we use a mixed notation, see (2.39)). To show this, we first note that our
treatment, see (2.15) and (2.17), implies that

Nm,p(θ) = b−m ∂
m

∂ζm
[H(ζ, θ) + 1]

∣∣∣∣
ζ=−p

. (C.4)

However, it follows from the expression (2.33) ofS(ζ, θ) and from (2.32c) thatH(ζ, θ) has
no singularities to the left of Reζ = 0. We can therefore write

Nm,p(θ) = m! b−m

2π i

∫
Cp

H(ζ, θ) + 1

(ζ + p)m+1
(C.5)

whereCp is a contour enclosing−p and keeping always to the left of Reζ = 0. Let us choose
it to be a circle of radiusp/2, for definiteness’ sake. It then follows from (C.5) that the positive
quantityNm,p(θ), see (C.2), satisfies the inequality:

Nm,p(θ) 6
2m+1b−mm!

pm
max
Cp
|H(ζ, θ) + 1|. (C.6)

Let us now use the expression (2.32a) of H(ζ, θ):

H(ζ, θ) + 1=
∑∞

r=0 eθq
r

q−rζ (1− qr)/(q; q)r∑∞
r=0 eθqr q−rζ /(q; q)r . (C.7)

Via (C.7) and (C.6) we then obtain asθ →∞

Nm,p(θ) 6
2m+1b−mm!

pm
max
Cp

[
e−(1−q)θq−ζ

]
. (C.8)

From (C.8) and (2.39) one therefore sees that

Nm,p(θ) = O[t−(1−q)]. (C.9)

The preliminary result (C.3) is therefore proven.
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Using the Smoluchowski equations (1.2) and the definition (1.9), we write (again see
(A.1)) the evolution equations for the momentsMn(t):

Ṁn = 1
2

∞∑
k,l=1

K(k, l)ckcl
[
(k + l)n − kn − ln] (C.10a)

Ṁn = 1
2

n−1∑
m=1

(
n

m

) ∞∑
k,l=1

kmln−mK(k, l)ckcl. (C.10b)

Let us now define

M̃n(t) =
∞∑
j=1

jncj (t) e−bj (C.11a)

entailing, via (C.2) and (2.2a),

M̃n(t) = M0(t) Nn,1(t). (C.11b)

To estimate the order of magnitude ofM̃n(t), we use (C.3) and (2.40b), getting thereby

M̃n(t) = O(t−2+q). (C.12)

Thus the order of magnitude of̃Mn(t) is independent ofn. This is not surprising, since it
only depends on small values ofj , thanks to the exponential cut-off function (last term in the
right-hand-side of (C.11a)).

From (C.10b) and the definition (1.17a) of our kernel one obtains

Ṁn =
n−1∑
m=1

(
n

m

)
(Mm − M̃m)Mn−m. (C.13)

We already know that

M1(t) = 1= O(1) (C.14)

for larget , see (1.5). Let us assume

Mk(t) = O(tk−1) (C.15)

for 16 k < n. It then readily follows (from (C.13), (C.15) and (C.12)) that

Mn(t) = O(tn−1). (C.16)

a result which is therefore proven by induction, for all non-negative integer values ofn.
In the case of the constant kernel it is easily seen that the moments (see (1.10c))

M(0)
n (t) =

n∑
m=0

S(m)n m! tm−1 (n > 1) (C.17)

satisfy the set of ODEs

Ṁ(0)
n =

n−1∑
m=1

(
n

m

)
M(0)
m M

(0)
n−m (n > 1) (C.18)

which are the analogous equations to (C.10b) for the case of the constant kernel.
We now define

µn(t) = Mn(t)−M(0)
n (t) (n > 1). (C.19)
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Note that (1.20), which holds for all models, entails

µ1(t) = 0. (C.20)

Using (C.19), (C.13) and (C.18) we find

µ̇n =
n−1∑
m=1

(
n

m

)[−MmM̃n−m + 2µmMn−m − µmµn−m
]

(C.21a)

with the initial condition (see (C.19), and recall that (A.3) holds for all models with
monodisperse initial conditions, see (1.9) and (1.3)),

µn(0) = 0. (C.21b)

Let us now determine the order of magnitude ofµn(t) for large t . From (C.19), (2.58) and
(1.10b) follows that

µ2(t) = Q(q)− 1 + O
(
t−1+q

)
. (C.22)

We now make the ansatz

µm(t) = dmtm−2 + O(tm−3+q) (m > 2) (C.23)

and show it to be correct by induction using (C.21a). Form = 2 this statement is already
proven by (C.22), with

d2 = Q(q)− 1 (C.24)

and it also holds forn = 1 with

d1 = 0 (C.25)

see (C.20). We therefore assume that (C.23) holds for 16 m < n and show that it then holds
for m = n. Using (C.19) as well as the asymptotic behaviour ofM(0)

n (t) given by (1.12) one
finds in the right-hand side of (C.21a)

µ̇n(t) =
n−1∑
m=1

(
n

m

){−m! tm−1M̃n−m(t) + 2
[
dmt

m−2 + O(tm−3+q)
]

×(n−m)! tn−m−1 + O(tn−4)
}

(n > 3). (C.26)

From this and the order of magnitude estimates ofM̃n(t), see (C.12), it follows that

µ̇n(t) = 2n! tn−3
n−1∑
m=2

dm

m!
+ O(tn−4+q) (n > 3). (C.27)

Hence by integration (see (C.21b)),

(n− 2)µn(t) = 2n! tn−2
n−1∑
m=2

dm

m!
+ O(tn−3+q) (n > 3). (C.28)

Equation (C.23) is thereby proven. Moreover, one obtains (from (C.23) and (C.28))

(n− 2)dn = 2n!
n−1∑
m=2

dm

m!
(n > 3) (C.29)

entailing, as can be easily verified,

dn = n!

2
(n− 1)d2 (n > 3). (C.30)

Via (C.24), (C.19) and (C.23), this yields (C.1). Q.E.D.
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