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Abstract. A new reactionkernelK (j, k) = 2—q/ —g* with0 < ¢ < 1, isintroduced, for which
the Smoluchowski equations of aggregatign= % Z,szl K (k, Dcger[8k+,j — 8k, j —61,j] can be
solved. Thetime evolution of the concentrationg) and of their momentaf,, (1) = Ziil Jj'cj@)

is analysed. The;(t) decay at large times as5@4") in striking contrast to the behaviour of the
constant kernek (j, k) = 2, for whichc; (r) behaves as 2 at large times. On the other hand, the
moments behave in leading order at large times exactly like the moments of the constant kernel,
though differences appear at higher orders.

1. Introduction

In this paper we introduce and study a new solvable model for the kinetics of irreversible
aggregation. In this process aggregateswhich are characterized by their mgsseact by
sticking to one another to form a larger aggregate:

Ai+A Ak 1.1
Jj km) Jjtk ( )

The non-negative quantities(j, k) = K(k, j) are the mass-dependent rates at which the
aggregates stick to each other. Using the law of mass-action, namely the assumption that the
collision rate between two aggregates of magsasdk is given byK (j, k)c;ck, wherec; (¢)

is the concentration of aggregate at timer, one obtains the following set of equations for

¢ (1), which are known as the Smoluchowski equations [1]:

o0

¢j=1 Z K (k, Dexer[Skstj — 8k — 81,7]- (1.2)
k=1

The prefactor% is conventional, to account for double counting. Here, and always below, a
superimposed dot denotes differentiation with respect to thertime

The Smoluchowski equations (1.2) are an infinite set of coupled nonlinear ordinary
differential equations (ODEs). A few cases, corresponding to specific kek@lsl),
have been solved exactly; there is, however, a well developed, albeit non-rigorous,
phenomenological ‘scaling theory’ that deals with a fairly general class of models [2]. The
purpose and scope of this paper is to exhibit a new case which can be solved and to analyse
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its behaviour; as discussed by one of us (FL) in a separate paper [3], this also contributes to a
better understanding of the validity and the limits of ‘scaling theory’.

Let us briefly review some well known qualitative features of the time evolution of
aggregation kinetics as described by the Smoluchowski ODEs (1.2), complemented by the
‘monodisperse’ initial condition

¢;j(0) =§;1. (1.3)

(An arbitrary constant in the right-hand side of this equation can be eliminated by rescaling
both the concentrations and the time appropriately.) Most of the qualitative considerations
given below also hold for more general initial conditions than (1.3), though the extension of
the quantitative analysis is usually non-trivial. The qualitative behaviour is expected to be
unaffected as long as all moments (see (1.9) below) of the initial concentrations are finite.
Hence we focus hereafter mainly on the monodisperse initial condition (1.3).

The Smoluchowski equations (1.2) have no equilibrium (time-independent) solutions.
This follows physically from the absence of a backward reaction in (1.1) and (1.2). Thus the
range of concentrations which contribute significantly to the total mass increases as reaction
(1.1) proceeds, while the concentratiof(¢) of each specific species of magslecreases
eventually towards zero,

tlim [c;(]=0. (1.4)
The total mass of the aggregates is conserved,

e =3 je0=1 (1.5)

j=1 j=1

where the last equality can always be attained by a suitable rescaling of the concentrations
c¢;j(¢) and time, and will hereafter always be assumed. The validity of this conservation law is
proven by summing (1.2) ovgrfrom 1 to infinity and noticing that, since all the terms inside
the square brackets cancel out, the right-hand side vanishes. It should be pointed out that this
conclusion is invalidated by convergence problems;it) decays too slowly iry. In this
case there occurs a systematacreasan the total mass of the aggregates. This decrease is
physically interpreted as the formation of an infinite aggregate containing a finite portion of
the mass, which is not accounted for in the sum (1.5) [4,5]. This phenomenon is known as
gelation We shall not, however, be dealing with it here.

Since, at larger times, the range of masses which contribute significantly to the total mass
increases, it is appropriate to study the regime in whiielndr are both large, ang maintains
a given proportionc with respect to a so-called ‘typical size(r) which goes to infinity as
t — oo. Itis then natural to make the following ansatz:

cj(t) = jT20[j/s(1)] (1.6)

where the functiond(x) is a ‘scaling function’ which vanishes quickly as— oo. This
is known as thescaling ansatfor Smoluchowski’'s equations and it has been extensively
investigated (see, for instance, [2, 3, 6]). The prefagtdris motivated by the property (1.5)
of mass conservation [2].

So far, the only exactly solved models were related more or less directly with the following
general form of the reaction rates [7]:

K(j,k)=a+b(j+k) +cjk a.7)

wherea, b andc are non-negative constants (of course, a common factor can be eliminated
from these three constants by rescaling the time in (1.2)).51f0, then gelation occurs at a
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finite time. Otherwise, the scaling theory applies, as reported in [2], and the following results
hold. If

K(j,k)=2 (1.8)
the Smoluchowski equations (1.2) with (1.3) admit the following solution [1, 7]:

-1

= o (1.80)

cj(t)

Itis then easily seen that the scaling ansatz (1.6) applies asymptoticalyp, j — oo and
x = j/t finite) with

s)y=t+1= t[l + O(t_l)] d(x) = x%e . (1.&)

For the momentd/, (z) of thec; (¢), generally defined by the standard formula

M) =) j"ci) (1.9)
j=1
equation (1.8) entails
1
Mo(t) = 1+: (1.1)
My(t) =2t +1 (1.1m)
M,(t) = Zs},m>m! 1 n>1 (1.10@)
m=0

wheren is an integer and™ are the Stirling numbers of the second kind [8] defined as
follows:

n |
n _ Sm J: ] 1.1
"= s G (1.10d)

m=0

Equation (1.16) follows from (1.8) and the definition of the Stirling numbers of the second
kind (1.1al), together with the following elementary identity:

i J! j_ooa 91 d Xy nlx" n>1)
(j—n)!x Tt 1—x T de\1-x)7 (1—x)r*l "z

j=1

(1.12)
for integern. Hence at large times (> o0)
Mot) =t H1—t71+00t D] =11 —172+0073) (1.12)
Mpyt) =2t[1+2) =2t +1 (1.1D)
M,(0) =nl " H1+i(n - D1+ 0@ (1.1%)
If instead
K(j, k) =b(j +k) (1.13)

the solution is also known [7]:

Cj (1) = aj(l — e—bt)j—leje"”e—bt (113))
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where the constants are the following combinatorial coefficients [7]:

jj—Ze—j j—3/2

F= L =L _[1+0(™ 1.13c
where the second equality follows from Stirling’s formula. Hence the scaling ansatz (1.6) still
holds, with

sy =€ D)= )—e? (1.13)
2

as can be checked from (1)&nd (1.18). The firstand second moments can also be evaluated
in closed form [7]:

Mo(r) = et (1.149)

My(t) = €. (1.1%)
The exact expressions for the higher momeit$r) become unwieldy for large, but at large
times they are given by

M, (1) = (2n — 3N e PP 1+ 0] (n>2 (1.15)

forintegem, as shown in appendix A. Note that, in contradistinction to the constant kernel case,
the second and the zeroth moment are not inversely proportional to each other at large times
(see (1.13), (1.1D) and (1.14), (1.140)). On the other hand, in this case the zeroth moment
and the monomer concentratio(t), see (1.1B), (1.1%) and (1.14), go asymptotically to

zero at large times in the same way,

a@ _  al)
Mo(t) Z?‘;lcj(t)

In the following we focus on the new solvable model characterized by the kernel
K(jky=2—eb —eth=2_g/ — ¢ (1.17a)

= exp[-1 + exp—br)] = e }[1 + O ). (1.16)

whereb is a positive constand, > 0, and

is a positive constant which is less than unityx @ < 1. Hereafter we will use the constants
g or b at our convenience. Clearly,#f>> 1, the kernel (1.13), (1.17) differs little from the
constant kernel (1& for all (positive integer) values of the indicgsandk, yet we find below
some remarkable differences in the behaviour of the corresponding concentratiorend
momentsM,, (¢). Ifinsteadh « 1, then the kernel (1.Hj for values ofj andk much less than
1/b,

j<<1/b k<k1/b (1.1&)
takes the form
K(j, k) =b(j+k)[1+0O(®bj, bk)]. (1.1%0)

Hence it approximates the linear sum kernel (&)Xather than the constant kernel (4).80f
course, for large values of the indices,

j>1/b k> 1/b (1.19)

the kernel (1.1&), (1.1%) again approximates the constant kernel &L.8Hence the study
of our model, see (1.8 and (1.11), in the caseh « 1, sheds some light, using exact
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results, on the crossover between two different types of kernels [3]. Indeed, as is shown in the
scaling theory [4], the asymptotic degree of homogeneity amdk of the kernelK (j, k) is

the most relevant factor in characterizing its scaling behaviour. The solution of our model in
the case ob « 1 will allow one to investigate the behaviour of an aggregating system with

a kernelK (j, k), see (1.1&) and (1.1D), which, over a broad range of lower mass values,

is homogeneous of degree one, see (@), 1But is asymptotically { — oo) homogeneous

of degree zero, see (1d)7and (1.11) [3]. Clearly, such crossovers exist in nature, because
aggregates may undergaalitativechanges in their behaviour as their size increases.

In section 2 we provide the solution of the system (1.2) with the initial condition (1.3), to
the extent of obtaining a closed expression for the generating function of the concentrations.
We also give expressions for the concentratiof(g) andc,(¢) of monomers and dimers as
well as for the momenta/y(r) andMx(z), see (1.9); of course

M) =) jej(t) =1 (1.20)

j=1

see (1.5) and (1.3). We also identify the asymptotic behaviours at large time of all
concentrations; (t) and moments/, (¢); a comparison of these behaviours with that of the
constant kernel case is also made. Some aspects of these findings are surprising because they
do not reproduce current expectations based on scaling theory; this is discussed in some detail
by one of us (FL) in a separate paper [3]. In section 3 we summarize our results and offer
some indications on future developments.

2. The solution

In this section we show how to solve the evolution equations (1.2) with the initial conditions
(1.3) and the kernel (1.5] and (1.1B). We focus on the generating function of the
concentrations and obtain a rather explicit form for it. We then extract various results from
it as outlined above and compare them with analogous results for the constant kernel case (to
which our case indeed reduces fo= 0, see (1.1&), (1.1D) and (1.&)).

The kernel (1.1&) and (1.1D) is of the form

K(j, k)= f(j)+ fk) (2.13)
with
f(H=1—ebt=1—¢/. (2.1b)

For all kernels of type (24d) there exists a transformation [4] which yields a substantial
simplification of the problem. Define

cij(t)  ¢()

$;(0) = == = 2.24
=T a® T Mo (2.28)
together with the change of time variable froro 6 according to the definition
do = dt Y " cr(r) = dt Mo(r). (2.20)
k=1

Note that this is a somewhat implicit change of independent variable. However, once the
quantitiesg; (6) are known, the change can be inverted by summingafaiultiplied by j
over j from one to infinity and using (1.5). There obtains

00 o0 -1
> iei6) = (Z c,(t)) (2.3)
j=1 j=1
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which, via (2.2), yields
¢;(0)

(1) = = 2.4
GO = T k@ &4
as well as, via (212),
dr =do ) ki (6). (2.5)
k=1

These formulae, (2.5) and (2.4), allow one to recover the original concentrafionsis well
ast = t(9) from the quantities; (9).

It is easily seen, using (222, that the Smoluchowski equations (1.2) take the following
simpler form:

dp; &
% > F0hds = £, (2.6)

with the initial condition
$;(0) =61 (2.7)

which corresponds to the monodisperse initial condition (1.3). Hereafte0 forr = 0. In
(2.6) and elsewhere, a sum vanishes if the upper limit is less than the lower limit. From (2.6)
and (2.7), one finds

j—1 0
$;(0) = ¢;0 e/ +e /DN (k) / do’ ¢ (6') ;0 &/ (2.8)
k=1 0

This allows one to solve (2.6) with (2.7) recursively, but the expressions rapidly become
unwieldy. Note that (2.8) implies the identity (normalization formula)

> 40 =1 (2.9)
j=0
We now define the generating function
FE.0)=)Y ¢;0)€° (2.10)
j=1

as well as a (pseudodifferential) operalgrwhich acts on power series ifi & the following
manner:

Tf[za_/e”] = f()ae”. (2.11)
= =1

Note thatT; is a well defined operator for a large class of functigitg). In particular,
however, if £ (j) is a polynomial inj,

N
HOEDI A (2.12)

n=0

thenT; is a linear differential operator with constant coefficients acting on the vargable

N 5 n
T, = ;f(&> . (2.13)
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Equations (2.6) fop; (6) thenyield, via (2.10), the following (pseudodifferential) equation
for F(¢, 0):

aF . .
5(579) =[F(.0) - 1(TyF)(¢,0). (2.14)

It is thus seen that any model characterized by a kernel of the sum fora) (@atls to this
equation. The models considered so far have involved ordinary differential opefaiss
that (2.14) generally became a (nonlinear) partial differential equation. Our model involves
instead a difference operator.

Indeed, let us now specialize to our case, seéj2ltis then notationally convenient to
redefine the generating function by writing

F(£,6)=7) ¢;6) €& (2.15)
j=1
instead of (2.10). Then (see (2.11) and ()1
(TrF)(&,0) =F(,0)— F(& —1,0). (2.16)
Hence, if we now define
H(,0)=F(¢.0)—-1 (2.17)

we obtain from (2.14) and (2.16) the following nonlinear differential-difference equation for
H(,0):

JH

Before proceeding to solve this equation, let us note that (2.15) and (2.17) entail the
formula

b~ 3’
$(0) = .—|<e"’f—> H(,0) G =D (2.1%)
J! Cle t=—oo
or equivalently
1/0\
¢; () = .—(—) H®b ™ Inn, 6) (2.1%)
J'\an =0

Let us now show how the evolution equation (2.18) is solved. A major simplification
occurs by writingH (¢, 0) in the following quotient form:
h(¢ —1,0)

H(¢,0) = W (2.20)

Then (2.18) is satisfied (¢, 0) satisfies the followindinear equation:
oh
5980 =—h —16). (2.21)

Let us note thak (¢, 0) is not uniquely determined b§/ (¢, 6). The latter, of course, is unique,
once the initial conditions are specified, as it is defined via (2.15) and (2.17) in terms of the
system of ODEs (2.6) for which existence and uniqueness theorems exist.

To solve (2.21) we define the following Fourier generating functidn, 9, p):

o]

A@Z.0.p)= Y h(z—k0)€™ (2.22)

k=—00
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It is then easily seen, via (2.21), that¢, 0, p) satisfies the linear ODE if
oA -
%(;,9’ /0) = - _IpA(é‘an 10) (223)

entailing
AL, 0, p) = A, 0, p) exp(—0e™"?). (2.2%)

From this last expression and (2.22) it is easy to obtain the following expressid;idr):

h(g,0) = Z(m) h(¢ —m, 0). (2.24)

m=0

There remains to evaluate the initial datg, 0), and for this we must now specify the
initial conditions. We refrained from doing so until now to keep our treatment general. Now
we specify that the system is initially monodisperse, see (1.3) and (2.7). Hence, via (2.15) and
(2.17),

H(,00=¢€" —1. (2.25)
This yields, via (2.20) a@ = 0, the following recurrence relation farz, 0):

h(z,0) = (& — 1) th(c —1,0) (2.2%)
which can be solved to yield, up to an irrelevant (see (2.20)) multiplicative constant,

(., 0) =" [[1-ee ™ (2.25)

=0

Inserting this formula in (2.24) one finally obtains

e = 35 O g gy g 50

m=0 I=m

[1-&C¢D] . (2.26)

:]8

W
3

Clearly, we have glossed over some details, such as the convergence of the trigopnometric sum
in (2.22). However, the final result (2.26) is obviously well defined (except at some specific
poles) and it can be verified straightforwardly that it satisfies both the evolution equation (2.21)
and the initial condition (2.2%.

Combining the definition (2.20) oH (¢, 6) in terms ofh(¢, ) with equation (2.21)
satisfied byi (¢, 0) one obtains

a
H(,0) = ~39 In[A(¢, 0)]. (2.27)

Clearly, in this equation, one can multipky¢, ) by any function which does not depend on
6 without affecting the final result. After some such manipulations, one finally obtains

9 00 om 00
H(,0) = ——1 —Tla-qg'¢m 51 2.2&3
& 0) =~ n[m;m!g( q'q" ") } (2.289)
3 X gm 2] gl=¢
=_2 "4 _ 2.28%
[ @29

where, of course, we used the definitiomyofl.17). Let us re-emphasize that the right-hand
side of (2.2®) is a well defined expression (both the infinite product and the sum clearly
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converge since & ¢ < 1) and that it satisfies the evolution equations (2.18) and the initial
condition (2.2%). Note that (2.2B) entails

H(0,6) =0 (2.29)

which clearly corresponds, via (2.17) and (2.15), to the normalization formula (2.9).
We now massage the expression (2.28) a bit more, to make its analysis more tractable. To
this end we recall the definition of thieexponentialt,

egx)=]]A-g'0)" (2.30)
1=

as well as that of the-factorial (x; ¢),,, defined as follows for non-negative integer values of
n:

n—1
Con=]]d-x¢h @=D (2.3()
=0

(x,g)o=1. (2.3)

The nameg-exponential ang-factorial can be understood if one looks at the lignit> 1:
in this case one finds the limiting values

qliﬂjl[(l —q)7"(q; Q)] = n! (2.30d)
Iimleq[(l — q)x] = exp(x). (2.3%®)
q—

From the definition oé, (x) in (2.30w) it follows thate, (x) also satisfies the following recursion
relation:

1
;[eq x) — eq(qx)] =e4(x) (2.30)

which is a discrete analogue of the differential equation for the exponential function. From
this relation or otherwise, one derives the well known identity [9]

oo xr
= . 2.31
eq(x) ; o (2.31)
By using it (withx = ¢™~¢%) we can rewrite (2.28) as follows:
q~"* expOq” )}
H(,0) = ——I 2.3
€= n{z @ ) (2.32)
_ 9 a7 " .
H(,0) =~ In{; vy [exp0g") — 1] +e,(q )} (2.32%)
H(,0) = —% In[1+S(¢,0)] (2.3)
whereS(¢, 0) is defined as
1 & g
S, 0) = Y [expoq") — 1]. (2.33)

es(q7%) =3 (@; q)r

Note that in (2.3B) we have added and subtracted in the argument of the logarithg the
exponential functior, (¢ ~°), see (2.31).

T See, for example, the chapter on thbinomial theorem, in particular equation (1.3.15) in [9].
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The form (2.32) is convenient because the functieg(g )] %, see (2.30), is entire in
¢ and it has a simple zero at= 0

[ea@™] = Q=g [e (67 O] (2.3%)
see (2.38), so that, in the neighbourhood of= 0

[ea@™)] " = =T (@bt {1+ Q(q)b¢ /2 + O[(b)?]) (2.3%)
o) r -1

T(q) =1/e,(q) = H(l g = [Z ] (2.34)
= @ 9

0(q)=1- 22 (2.34)

= 1-4

where we have introduced the quantitiég ) andQ(g) for notational convenience. Note that
this definition entails
TO =1 00 =1 (2.3%)
1<T(g) <o —00 < Q(g) <1 O<gqg <. (2.34)

It is therefore easy to evaluaté(¢, ), as well as itg -derivatives, at = 0. In particular, in
addition to (2.29), we obtain

AH(C, 0) 3 < expHg’) — >, 4" expfq”)
S LLEN N ) =bT =" 2.35
9 o @ a0 Z (q: q)r (q); (4 9)r (2:35)

This formula is convenient to connect the ‘new tingeWith the ‘real time’t. Indeed,
(2.5), (2.17) and (2.15) entall

bar = dp 2L 0 (2.36)
a; §=0
hence we obtain
expHq’) — > expdg”) — 1}
=T =T o) —1 — = 2.37
r=Tlq )Z (g5 9)r (q)[eXp( . +; (g5 @)r (2:37)

where the integration constant has been chosen sé tha for ¢ = 0.
Now we can also obtain the behaviour &%(¢) in real time. Indeed, equation (P
entails

Mo(t) =Y cx(t) = (dt/do) ™" (2.3%)
hence, from (2.37),

IS © _r 0g" -1
Mo) =3 ex(t) = [T(q) 3 L‘”)} . (2.3%)
k=1 r=0 (C], Q)r

This formula, together with (2.37), provides an exact, if implicit, expressioMig).
For largef, equation (2.37) yields

e~ (1-9)0

z=T(q)e9{1+ -

+0[e”®47] } (2.3%)
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which is easily inverted to yield

(- -(1-¢%
P {1_ [I/T(q_)] o +o[(L> ’ ]} (2.3%)
T(q) 1—gq T(q)

Note that these results imply thagoes to infinity when does. Thus the above manipulations
are indeed consistent.
Hence, at large times,

e e’ ge -0 42
Mo(t) = 1) = 1— +Oe‘1‘”9} 2.408
ot) ;cko T(q){ T [ ] (2.400)

and using (2.39) this also yields

00 ., ¢ 19 ¢ -(1-¢%
Mot = Y et =+ {“[T@} o[<m> ]} (2.400)

It is of interest to compare this last formula with the corresponding one for the constant
kernel (1.&), see (1.18). The first remark is that, while the dominant term at large(1.12a)
and (2.40) coincide, the first correction terms differ not only in their time dependence (the
exponent of) but even in their sign (see (2.84. This is somewhat surprising, since, at least
for b > 1, namely forg close to zero, our model resembles the constant kernel case (see the
discussion after (1.17)). Indeed, fpr= 0 (as opposed t@ nearly zero) equation (2.37) yields
t = exp(@) —1, see (2.3d). Hence foiy = 0, equation (2.38) yields exactly (1.18). We see
therefore that the first correction terms in (1a)l2nd (2.4®) have opposite signs, no matter
how smallg is, as long as it does not vanish; but the results coincide fer0. This paradox
is resolved when one notes that the higher-order correction terms irbj2wiich were left
uncomputed, become, in the lingit— 0, of the same order as the leading correction. Let us
moreover point out that the corrections appearing in (2.40e of a different nature from that
appearing in (1.18). The latter is a so-calleanalytic correction[10] which can be removed
by a simple shift of the time variable. The corrections in (B)4tannot be so removed.

To sum up, in our model the behaviour at large time of the zeroth moMgfy displays
significant differences from that of its counterpart in the constant kernel case. The leading
behaviours are in fact identical, see (laland (2.4®), but there exist non-leading terms in
(2.4M) with exponents which depend on the parametef the model.

Let us now compute the monomer concentratigi). From (2.6) with; = 1 and (2.b)
we obtain

depy

= =—_Q1- ) 2.41

a0 A-9) ¢ (2.41)
Hence, using the monodisperse initial condition (2.7),

$1(0) = exp[—(1 — ¢)0]. (2.42)

(This formula is also obtained, of course, from (2.8).) Hence, from the definitioa)(@f2he
quantitiesp; (6) and from (2.38),

1 (g exp(l—q+q")0] }1
= ) 2.43
) T(q) {; (g 9)r (2.43)

This, in conjunction with (2.37), provides an exact, albeit implicit, expressioafoy. In the
limit of large times this yields

e 2 { qe= -0
T(q)

a(t) = +0[e”®47] } (2.449)

l-gq
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hence, via (2.39)

¢ 10 PN &)
c1(t) = [T(q)]l—qz—@—q){l + 2[%} + o[(m) } } (2.4%)
The comparison with the constant kernel case, which (seb)(Wigh j = 1) yields
at) =t [1—t71+01™?)] (2.45)

is remarkable. Both the exponent? +¢, and the amplitudeZ[(¢)]*~, of the leading term

in (2.4%) go over, ag; — 0 (see (2.3d)), to the corresponding values?2 and 1, in (2.45).

However, again we find a difference in sign in the first correction terms, see (2.45h)2.44

and (2.34). The resolution of this paradox is the same as in the previous cage:a8, the

higher-order corrections which were not computed, see [.&4come of the same order as

the leading-order correction. On the other hand, the difference in the leading behaviour for

g > 0is more remarkable. The relevance of this finding to scaling theory is discussed in [3].
As we have seen, the corrections to the total number demgjty) areanomalous In

fact, theabsolutesize of the leading correction term in (2B)@ecays proportionally to2*?,

that is, exactly in the same way as the monomer, seelfp.#¢hat is more, the amplitude of

this correction term is the same, so that

T(@)

Thus we see that theading correctionto the total number densityfy(¢), which we called
anomalousecause it differs from the corresponding correction in the constant kernel case, is
in fact entirely due to the contribution of (¢) to My(¢).

Let us now look at the behaviour af(¢). A computation entirely similar to that performed
for ¢1(0) yields, via (2.8),

P —(2—¢?)
Mo(t) — 1/t — c1(t) = O|:< ) i| (2.46)

1 - expl-(1 - ¢)%]

$2(0) = exp[-(1 — g*)6] 1 (2.47)
—q
Using (2.2) and (2.38) one finds
1 — exp[-(1 — )] { >, q" expliq’ — q%+ 1)0] }‘1
= 2.48
) 1-9)T(q) ; (@ 9)r (2.48)
and for larger this yields, via (2.3B),
) L o ¢ —(1-¢)? P )
=A-—q) YT (@* 21— | — 2| ——
) =A-q) [T@] { [T(q)] +(q + )[T(q)]
3 t —(1-9)(2—q) o A 049
-3 —— + - .
) ) 249

where the last computed term in the right-hand side is only meaninggukifq < 1. Note
the proliferation of correction terms with different orders of magnitude. This phenomenon
becomes more pronounced Asncreases; moreover, as we shall see below, the large-time
limit for fixed j is only attained for a range of times the lower limit of which grows rapidly
with j.

Concerning the large-time behaviourwgfr) at fixed j, we show below that at large times

cj(0) = [(g; @) ;-1 T (@] =& D[1 + o). (2.50)
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Let us prove immediately that the order of magnitude behaviour given by this formula is
correct, relegating the evaluation of the amplitude in (2.50) to appendix B. For the leading
term of (2.50) to provide a good approximationddr), however, it is necessary that this
term be much larger than the leading correction term. As follows from (2.53) below, or the
computation in appendix B, this correction always decays more slowlyrttfarror (2.50) to
describe the true behaviour of(z), it is therefore necessary that

1@ s 72 (2.51a)

implying
Int > q7. (2.51b)

Note that, since all measures of characteristic size, sudt,agr)/ M, (¢) forn > 1, grow
linearly inz (see (2.61) below), at timeonly those aggregates whose sjae of order In Ins or
less have attained their asymptotic behaviour: afirstindication of possible differences between
asymptotic behaviour in time at fixed siZeand at vanishing ratig/¢. This is discussed in
more detail in [3].

We prove the result (2.50) by induction. We assume that for allj,

¢ (8) = ax exp[-6 (L — ¢“)][L + 0o(D)]. (2.52)
Here thex, denote unspecified constants. However, from (2.8) andb2rie obtains
j-1 0 )
¢;(0) = exp[-(1 - ¢’)f] Z[(l ) / o' (6) k(6" €377 } (2.53)
k=1 0
From (2.52) there follows that the integral convergeg as oo, so that
¢;(©) = a; exp[-0(1 — g)][1 +o(D)] (2.54)
consistently with (2.52). Via (28, (2.40) and (2.39) this confirms (2.50). Q.ED

Let us finally study the moment¥,, (¢+) of the concentrations, see (1.9). They can be
evaluated by means of the expression

> a"H (¢, 0
Mn(t) =b" (Z Cj([)) %
entailed by (1.9), (28, (2.15) and (2.17). The expression fh(¢) is thereby found to be
(from (2.3Z) with (2.33) via (2.34))
-1, 23 2rd" € /(@9
(q; @)r Z,cfx;oqreﬁqr/(q;Q)r

with Q(g) defined by (2.3d), which will be used below whenever convenient. Note that this
quantity diverges ag — 1. From (2.55) there obtains, in mixed but useful notation, see
(2.37),

(2.55)

]=l ¢=0

Ma(1) =2T(9) ) | 0(9) (2.56)
r=0

2 rd' € /(@)
Yo od € /(q; q)r

2
My(t) =2t + Q(q) + (2.57)
One therefore finds for large times,

Ma(t) = 2t + Q(q) + expl (g — D] + Ofexpp (¢ — 1]} (2.58)

l-g¢q
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and hence, via (2.329

2q
1-gqg

Ma(t) = 2t + Q(q) + [t/T @1 1+O{[t/T(@]q* = D}.  (2.58%)
Note the remarkable structure of this expression: it differs fagsir) for the constant kernel
case, see (1.1), in the next-to-leading order by an additive constant, which diverggs-asl.
This fact is related to the existence of a transient behaviour over a large range of times in which
M>(r) grows exponentially in, see (1.14). This is discussed in detail in [3].

Note, moreover, that no correction of ordet*? appears in (2.58) relative to the leading
term. We show in appendix C that this is indeed true forahd that

M, (1) — MO (1) = —[1 - Q(@][(n — 1)/2]n! "2 + O("~3*7) (n>2) (2.59)

whereM? (¢) is thenth moment for the constant kernel case as given in (. 1om (2.59)
and (1.12) one then obtains

n—
2

Note finally that an expression similar to (2.57) can also be derived for the inverse of the
zeroth moment, namely

M,(t) = n! t"—l[l + lQ(q) 1+ O(z—ZW)} (n>2). (2.60)

expidq") —1

2.61
(g 9)r1 ( )

[Mo)] F=1+1-T(g) )
r=1

This is obtained from (2.37) and (2.38) using the relation
@ )r=(q:9)r-1(1—q") (2.62)
implied by (2.3®) and (2.3@)

3. Summary and outlook

Inthis paper we have introduced and solved the new model of aggregation kinetics characterized
by the Smoluchowski evolution equations (1.2) with the kernel @).4Ad (1.11), focusing

mainly on the solution identified by the ‘monodisperse’ initial condition (1.3). We have, in
particular, obtained explicit formulae for the long-time behaviour of the concentratjons

and of the momenta?,, () (see (1.9)): (2.50) with (2.3} gives the leading term as— oo of

cj(®), (2.4M) with (2.34) gives the leading term, as well as the first correction}fg{r) as

t — oo and likewise (2.60) with (2.3 for M,,(t) with n > 2 (forn = 1 the result is trivial,

see (1.5)). Exact, if not quite explicit, formulae are also given for the concentratignsnd

the momentsV, (¢) for all time, especially for low values of the ‘mass’ indgxand of the
‘moment’ indexn: see (2.43) and (2.48) with (2.37) and (ZBfor c1(r) andca(z); as well

as (2.3®) and (2.57) with (2.47) and (2.8for My(t) and M,(¢). We also compared these
findings with the corresponding results for the prototypical Smoluchowski model characterized
by a constant kernel [1] (to which our model reduces¢fee 0); this is further discussed in

a separate paper by one of us (FL) [3], where the limiting case of our modelwith1 is
elaborated upon and used to illustrate the ‘crossover’ phenomenon manifested by our model
with ¢ very close to unity, in which case the kernel (1.17) is well approximated by the linear
kernelK (j, k) = b (j + k) for a large range of (low) values of the ‘mass’ indigeandk but
approximates the constant kerré{j, k) = 2 when the indiceg andk become very large.

This ‘crossover’ phenomenon is of interest for applications, since kernels featuring such a
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behaviour correspond to situations characterized by an aggregation phenomenology whose
nature changes as the size of the clusters increases. Such situations are beyond the range of
conventional scaling theory, so that an exact result in this respect is of interest [3].

A remarkable feature of our findings is the difference displayed by the behaviour at large
times of the momenta7,, (r) in our model, relative to their counterparts in the constant kernel
model; a difference which shows up, however, only in the next-to-leading terms (sek)(2.40
and (1.12), as well as (2.60) and (1.&0. Analogous results had been obtained in a variant
of the constant kernel case, featuring a kernel whose only dependence on the mass indices is
via their parity [11]. We plan to treat this model in a subsequent paper [12], because we have
obtained some results for it that go beyond those known hitherto [11].
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Appendix A
Here we prove (1.14) and (1.15). Using (1.2) one finds\g(¢), see (1.9),
M,(t) = 3 Y [k +D)" — k" = I"]K (k. Deger. (A.1)
k=1

For the linear kerneK (k, I) = b (k +1), this becomes, for non-negative integer values (b
which we restrict ourselves throughout this appendix)

Mg = —-bMoM, = —bM, (Anla)
n—1

Mu(1) = b Z(” )MmﬂMnm (n>2) (A.1b)
m=1 m

with the initial conditions (see (1.3) and (1.9))
M,(0) = 1. (A.2)

In (A.2) we also used mass conservation, see (1.20); clearly (A.2) together with (A.4) yields
(1.14).
We then note that (AH) with (1.20) yields

My = 2bM, (A.3)

and this, together with (A.3), gives (134
To prove (1.15) we make the ansatz

M, (1) = &, "DV [1 + Oe™)] (n > 2). (A.4)

As shown by (1.1H), this is correct fon = 2 (indeed, trivially, fom = 1 as well, see (1.20)).
We now show by induction om that it is true for all values of > 2. Assume (A.4) to be true
for all values of the moment index up#o— 1. Then (A.D) yields via (1.20)

n—2
M, = bnM, +be®"D[1+ 0 ") Z( " >a,,,+1an_,,, (n > 3). (A.5)
m
m=1
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Define
Wn(t) = M, (1) e (n > 3). (A.6)

Equation (A.5) then becomes

[y = b1 + O(e™")] Z( )amﬂanm (n > 3). (A.7)

m=1

Hence
() = a, €211+ O(e™")] (n>3) (A.8)

for large timeg, where

n—2
n—2a, = Z( " )amﬂanm n>3). (A.9)
m

m=1
Of course, in the right-hand-side of (A.9; = 1, see (A.4) and (1.1}. To complete the
proof we need to show that
= (2n — 3! (n = 2). (A.10)

To this end, we introduce the generating function

[e¢]

Fay =Y ‘;‘—Ix (A.11)

n=2
Via (A.9), one then obtains faF (x)

— —2F =F— A.12
* dx dx ( )

with F(0) = F’(0) = 0, see (A.12). Itis then easily verified that
Fx)=1—x—+1-—2x (A.13)

from which (A.10), hence (1.15), follow.

Appendix B

In this appendix we prove (2.50). Via (2.39), (2)2nd (2.40), it is equivalent to
—(1—¢")6
¢r(0) = —)[1 +0(1)]. (B.1)

(C]» q)r-1
To prove this formula, we use (2.8Rand obtain

> ola"/(q; q) 1 " Voebrs

H(,0)=— . B.2
“0 1+3°72[e@=D9/(q; g),]ers (8-2)
The right-hand side of (B.2) can be expanded to yield
00 N
_ 4" (qo-10 gproc N[ (@*—1)0 sc]
H(,0) = gl 4 1 e et . B.3
CO==2 G, Z( "X @ (8.3)

In this expression, we collect all terms contributing to the factor multiplyitig, avith » a
non-negative integer, and single out those which dominate in thedimitoo. Via (2.17) and
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(2.15), this yields the large-time behaviour®f#). Up to a sign, all these terms are of the
form

o

expl(g* — 1)6]
(@q: @)s,

N
explig” — DOI[ | (B.4)
k=1

(G Dro

whererg > 0 ands, > 1, as implied by the limits of they ands summations in (B.3). Since
the terms must combine to contribute to the coefficienttf @e must have

N
ro+ Z Sk =T. (B.5)
k=1

From (B.4) one sees that the sum associated to the set of indieesls;, with 1 < & < N,
has the following behaviour as a functionéof

C(ro, S1,...,8N) exp{ |:q’° + iqsk — (N + 1)](9} (B.6)
k=1
whereC (rg, 51, ..., sy) is independent of.
ForO<g <1
g +q" <1+q¢™ (B.7a)
since
(1-4¢"H1—-4q’) >0 (B.7b)

If we now apply (B.3) iteratively, we obtain (see (B.5))

N
g0+ g% < N+q T = N+g'. (B.8)
k=1

From this follows, see (B.6), that, in tile— oo limit, no term grows more than

expli¢g” — 1)o]. (B.9)
It now remains to determine the cases in which the growth is precisely proportional to (B.9).
There are only two possibilities:

(a) ro = r: in this case alk, must be zero (see (B.5)). This implies thatis equal to zero
and gives the contribution

r

q
(q; @)r

(b) s; = r. In this caseV must be unity andy vanishes. This yields the contribution

expllg” — 1)0]. (B.10)

: expllg” — 1)0]. (B.11)
(g5 9)r

Summing both contributions, (B.10) and (B.11), and using (2.63), we obtain

b0y = P~ D (B.12)

(@ Dr
and this concludes our proof, see (B.1).
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Appendix C

In this appendix we prove (2.59), namely

n—

2 1[1 — Q(@)]" 2+ O3 (n>2) (C1)

M, (1) — MO (1) = —n!

wheren is an integer and)(q) is defined by (2.34). M, (), respectivelyM©(¢) are the
nth moments, see (1.9), in our model, respectively, in the constant kernel case (see (1.10) and
(2.12)).

We first establish the following fact. Consider the sum

N p(0) =) j"$,;©0) e (C2)
j=1

wherem is a non-negative integep, > 0 is a positive number and the quantitigg6) are
defined by (2.2) for our model. Then we claim thatt as oo,

Ny p(6) = O[], (C.3)

(Note that here we use a mixed notation, see (2.39)). To show this, we first note that our
treatment, see (2.15) and (2.17), implies that

m

d
Nm,p(g) = b_m_[H(g? 0) + 1]

T (C.4)

{==p

However, it follows from the expression (2.33) 8¢, 6) and from (2.32) that H (¢, 0) has
no singularities to the left of Re= 0. We can therefore write

m!b’"’/‘ H 6)+1
2ri Je, (¢ +pymtt

whereC, is a contour enclosing p and keeping always to the left of Re= 0. Let us choose
itto be a circle of radiug /2, for definiteness’ sake. It then follows from (C.5) that the positive
quantityN,, ,(0), see (C.2), satisfies the inequality:

Nm,p(e) = (CS)

2m+lb—m ]
Np @) < —2 max|H ¢, 6) + 1 (C.6)
" )

Let us now use the expression (2a3df H(¢, 6):
Yo €q T A= q) /(45 D)

H(,0)+1= = ; (C.7)
2o €1 a7 /(g 9)r
Via (C.7) and (C.6) we then obtain 8s— oo
2m+1b—mm!
< ~(1-9)0 ,~¢ . .

Ny p(0) < o ng?X[e q°] (C.8)
From (C.8) and (2.39) one therefore sees that

N, () = O[], (C.9)

The preliminary result (C.3) is therefore proven.
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Using the Smoluchowski equations (1.2) and the definition (1.9), we write (again see
(A.1)) the evolution equations for the momems (¢):

=1 Z K (k, Deger[(k+ D" — k" —1"] (C.10m)
k=1
1, =1 (”) 3R K (K, Dege. (C.10)
m=1 k=1
Let us now define
My0) =) j'cj(nye” (C.11a)
j=1
entailing, via (C.2) and (2a),
M, (1) = Mo(t) Ny 1(0). (C.11v)

To estimate the order of magnitudedf, (), we use (C.3) and (2.4, getting thereby
M, (1) = O@t ™). (C.12)

Thus the order of magnitude @, (¢) is independent ofi. This is not surprising, since it
only depends on small values pfthanks to the exponential cut-off function (last term in the
right-hand-side of (C.1d)).

From (C.1M) and the definition (1.18) of our kernel one obtains

. n—1 n B

M, = ;(m)(Mm - M,)M,_,,. (C.13)
We already know that

Mi(t) = 1= O(1) (C.14)
for larget, see (1.5). Let us assume

My () = O™ (C.15)
for 1 < k < n. It then readily follows (from (C.13), (C.15) and (C.12)) that

M, (1) = O™ ™). (C.16)

a result which is therefore proven by induction, for all non-negative integer values of
In the case of the constant kernel it is easily seen that the moments (se®)(1.10

MO ) =" S"Wml (n>1 (C.17)
satisfy the set of ODEs
n—1
M = Z(" )M,i,")M,E‘”m (n>1 (C.18)
m=1 m

which are the analogous equations to (@®)1for the case of the constant kernel.
We now define

[ (1) = M, (1) — MO (1) (n>1). (C.19)



7716 F Calogero and F Leyvraz

Note that (1.20), which holds for all models, entails
pa(r) = 0. (C.20)

Using (C.19), (C.13) and (C.18) we find
n—1
. n ~
Hn = Z<m>[—MmMnm + 24t My — Honbon—m ) (C.21a)

m=1
with the initial condition (see (C.19), and recall that (A.3) holds for all models with
monodisperse initial conditions, see (1.9) and (1.3)),

Let us now determine the order of magnitudeugfz) for larges. From (C.19), (2.58) and
(1.1) follows that

pa(t) = Q(g) — 1+ 0O(t ). (C.22)
We now make the ansatz
[ (1) = dyt™ =2 + O™ ~3*) (m > 2) (C.23)

and show it to be correct by induction using (a1 Form = 2 this statement is already
proven by (C.22), with

dy=Q(g) -1 (C.24)
and it also holds for = 1 with
dy =0 (C.25)

see (C.20). We therefore assume that (C.23) holds ford < n and show that it then holds
for m = n. Using (C.19) as well as the asymptotic behaviourgf (r) given by (1.12) one
finds in the right-hand side of (C.al

n—1
n ~
(1) = —m! "M, () + 2[dt" 2 + O3
fen (D) X;(m){ ml1 (1) +2[dpt (1" 3]
x(n —m)! """+ 0" (n > 3). (C.26)
From this and the order of magnitude estimatesfpfr), see (C.12), it follows that
n—1
d,, N
in(1) = 2n1 1773 " =+ O(" ) (n > 3). (C.27)
m=2 m!
Hence by integration (see (C13)],
n—1
d, .
(n = 2 (t) = 201 1"72 Y " =L+ O(" %) (n > 3). (C.28)
= m!

Equation (C.23) is thereby proven. Moreover, one obtains (from (C.23) and (C.28))
n—1
dy,
(n — 2)d, = 2n! Z_;E (n>=3) (C.29)
entailing, as can be easily verified,

d, = n—z!(n —Dd> (n = 3). (C.30)
Via (C.24), (C.19) and (C.23), this yields (C.1). Q.E.D.
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